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COMMENT 
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Abstract. Recent Monte Carlo simulation results of Yang and Chakrabarti suggest the 
shortest path S, of an N-stepped self-avoiding walk (SAW),  with finite range interaction 
of bridges, has a finite size scaling behaviour S,w/ N = A + N - A (  B + C/  N ) ,  where the 
exponent A is superuniversal; A = 0.19 for all dimensions d studied (2 S d S 5 ) .  We report 
here the small-N series enumeration results for S,v for SAWS with nearest-neighbour bridges 
on square (up  to N = 18), triangular (up to N = 11) and simple cubic (up to N = 12) 
lattices. The estimated values of A for different lattices (==0.22*0.01 for d = 2 and =0.26* 
0.01 for d = 3)  have been compared with the above Monte Carlo estimate and the indication 
of superuniversal behaviour of A has been discussed. 

The multifractal properties of self-avoiding walks (SAWS) with (say nearest-neighbour) 
bridges networks [ l ]  are of current interest. For example, the resistance RN - N S  of 
a SAW chain of length N (bridge bonds having identical resistance to the chain bonds) 
with 6 (cl) as the resistance exponent [2-41, the shortest path length S ,  - N e  where 
E ( S l )  is the shortest path exponent [l,4-61 and the spectral dimension d, (21) 
[l ,  3 ,4 ,7 ,8]  of such networks have been studied extensively. On careful analysis [ 11 
the results of all these studies (for d = 2 and 3) indicate the SAW with bridges network 
to be dominantly linear in structure ( 8  = E = d,  = 1). In fact, since the diffusion on the 
network is related to its conductivity, S is related to d ,  by a scaling relation [4] 
d ,=2/ (1+6) .  Also w e  expects on general grounds [6], 6 s ~ .  Such networks are 
expected to become linear above the upper critical dimension d = 4 for  SAW^, and are 
obviously linear in d = 1 .  All the above results [ 1-81 for 2 S d < 4, derived indepen- 
dently, become mutually consistent: 6 = E = d,  = 1 for all d. However, significant finite 
size scaling corrections to this linear scaling behaviour are expected due to the local 
blobs coming from the multiply connected structures formed due to the local bridges. 
The above quantities, say the average shortest path length SN, are expected to have 
scaling form [l], 

(1) 

where A, B and C are constants dependent on the lattices (and the bridge length or 
interaction range etc). The parameter A denotes the fraction of SAW steps which are 
not connected to the other parts of the SAW by bridges (the exponent E for SN, discussed 
before, is taken to be unity). The recent Monte Carlo simulation results for the shortest 

s,/ N 2: A +  N - ~ ( B +  C! N )  

t Permanent address: Vidyasagar College of Women, 39 Sankar Cihosh Lane, Calcutta 700006, India. 
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path of  SAW^ (with N - 150 for d = 2 to N - 25 for d = 5)  indicated [ 11 the exponent 
A to be superuniversal; A-0.19 for all the dimensions studied ( 2 s  d d 5) .  

Here we intend to compare and check the observation using series enumeration 
results for shortest paths of SAWS with nearest-neighbour bridges. We have obtained 
the series results for S N  on square, triangular and simple cubic lattices for step sizes 
N up to 18, 1 1  and 12 respectively. We have found A, B and C from least-squares 
fits to equation (1) and then obtained the extrapolated values of A in d = 2 and 3. 
These values of A have been compared with the Monte Carlo estimate. 

We use the Martin algorithm [9] for enumerating the SAW configurations. The 
shortest path S ,  (through nearest bridges) for each SAW configurations can be found 
out using the labelling algorithm [ 1,4]. The linear part (A,) of each SAW configuration, 
the part of the network for which there is no multiple connection through the bridges, 
has also been independently determined. The results for the total number ( C , )  of 
SAW configurations of N steps, total shortest path length (C,SN)  and the total linear 
part ( C N A N N )  for SAWS on square (up to N = 18), triangular (up to N = 1 1 )  and 
simple cubic (up to N = 12) lattices are given in table 1. The calculations took about 
60 CPU hours on a Horizon I11 and 15 CPU hours on a ND-500 computer. 

In figure 1 we have presented the value of A ,  (obtained from series enumeration 
of the linear part from table 1 )  as a function of 1/N, for different lattices. In order 
to evaluate A, the asymptotic values of the constants A, B and C are needed. From 
the analysis of these linear part data, .4 values can be estimated. We use Pad6 
approximants for A N  (as ratios of polynomials in 1/N of order m and n, m < n, with 
coefficients to be determined from chosen values of m and n). This method is quite 
stable and the estimated values of A are 0.55*0.01, 0.326*0.001 and 0.46i0.01 for 
square, triangular and simple cubic lattices respectively. An independent least-squares 
fit of the shortest path data to equation ( l ) ,  gives the values of A, B and C which are 
presented in table 2 (allowed standard deviation is of the order of The value 
of A for the triangular lattice obtained from the above two independent methods are 
found to be in good agreement, whereas the agreements are not apparent for square 
and cubic lattice estimates. This discrepancy can be understood from figure 1 .  This 
figure reveals that for square and simple cubic lattices the size dependence of AN 
fluctuations are quite strong from the small step sizes considered (this fluctuation is 
rather small for the triangular lattice). It may be noted, however, that the least-squares 
fit to the Monte Carlo estimate of S N  in [ l ]  gave A, B and C values, which, in most 
cases, are within the error limits of our least-squares fit estimate from series enumeration 
results. This suggests that the values of A, B and C obtained by a least-squares fit of 
the S, data, even for the small step sizes considered here, are quite reliable. In figure 
2, we have plotted A, as a function of 1/N using our least-squares fit values of A, B 
and C, given in table 2. They appear to extrapolate to the values A L- 0.23 for square, 
A = 0.20 for triangular and A = 0.26 for simple cubic lattices. Although these values 
of A (and its dimensional variation observed here) do not compare very well with the 
previous Monte Carlo estimate [ l ]  of a superuniversal (d-independent) value of A 
(=0.19), the extrapolated estimates from such small series analysis are not very reliable 
either. 

It should be mentioned that putting C = 0 in equation ( l ) ,  we had also estimated 
A N  using a second method: solving numerically for f( N, A N )  = 0, where 

f(N9 AN)= ~ ~ ~ ~ / ~ ~ - ~ ~ N - ~ / ~ ~ - ~ ~ ~ l / ~ ~ ~ , - * / ~ ~ - ~ ~ ~ - ~ s N - ~ / ~ N - 4 ~ ~ 1  

- [ N - "  - ( N  - 2)-"]/[(N -2)-"- ( N  -4)-"]. 
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Table 1. C N ,  SN and A N  for SAWS with nearest-neighbour bridges on square, triangular 
and simple cubic lattices. 

No of No of SAW Total shortest Total linear 
Lattice steps configurations path length path length 
type N CN SNCN ANNCN 

Square 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

Triangular 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Simple cubic 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

4 
12 
36 

100 
284 
780 

217 2 
591 6 

162 68 
441 00 

120 292 
324 932 
881 500 

237 444 4 
641 659 6 

172 453 32 
464 666 76 

124 658 732 

6 
30 

138 
618 

273 0 
11946 
518 82 

224 130 
964 134 

413 316 6 
176 689 38 

6 
30 

150 
726 

353 4 
169 26 
813 90 

387 966 
185 388 6 
880 987 8 

419 341 50 
I98 842 742 

4 
24 
92 

336 
113 2 
372 0 

116 84 
363 84 

110028 
331 720 
979 276 

288 846 4 
838 641 2 

243 491 60 
698 355 48 

200 362 176 
569 268 356 

1618172568 

6 
48 

3 06 
174 0 
929 4 

476 40 
237 102 

1154196 
552 262 2 

260 613 84 
121 596 186 

6 
60 

402 
252 0 

145 02 
819 72 
444 930 

239 563 2 
125 872 14 
658 601 88 

339 003 810 
1740622920 

4 
24 
84 

304 
996 

325 6 
100 84 
312 96 
938 92 

282 360 
829 380 

244 142 4 
706 383 6 

204 760 24 
585 759 72 

167 835 408 
475 906 532 

135 129 3944 

6 
36 

210 
115 2 
599 4 

302 04 
148 362 
714912 

339 300 6 
159 048 84 
737 941 38 

6 
60 

378 
232 8 

130 38 
729 00 

390 306 
208 603 2 

108 680 70 
565 563 00 

289 407 114 
1479748968 

Such a method gives A = 0.8-0.9 for d = 2 and A = 0.5 for the simple cubic lattices?. 
However, the error in such a method is obvious. As mentioned previously, and shown 

t Such large values of A (-0.8 for d = 2) have also been obtained [lo] for similar small series results for 
SAWS on the square lattice [6] by employing a similar method (treating A N  independent of N )  (from series 
for N up to 22 in the square lattice). 
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Figure 1. A, against I /  N, from table 1, for various lattices (W: square; A: triangular; 0:  
simple cubic). 

Table 2. Values of A, B, C and A from least-squares fit to (1) of the S ,  data from table 1. 

Lattice A B C A 
~ 

Square 0.498r0.001 0.466*0.001 -0.04 * 0.1 0.257r0.001 
Triangular 0.326 * 0.001 0.516 i 0.001 -0.04i0.01 0.227 i. 0.001 
Simple cubic 0.391 i 0 . 0 1  0.628 * 0.03 0.21 1 0 . 1  0.2610.1 

in figure 1, the variation in A N  for such small step sizes is quite large and the error 
in taking it as a constant, in this method, forces the entire change in S N  (contributed 
by both changes in AN, which for N = 18 accounts for almost the entire change in S N ,  
and in KA terms in (1) with c = 0) to be determined by A alone, giving naturally large 
value of A. 

We have fitted here to equation (1) the small series data for the shortest path length 
SN of SAWS with nearest-neighbour bridges. The least-squares fit gives the fitting values 
of the parameters ( A ,  B, C and A )  comparable to those obtained fitting the large-N 
Monte Carlo data [ l ]  for S N .  We also obtained independently the fraction of steps 
AN which are not connected to other parts of the SAW by bridges. These also gave 
comparable estimates of A (=AN,  N+co). The sequences of A N  are obtained from 
the least-squares fit (of SN to equation (1)) parameter values. The extrapolated values 
of A (=0.22 f 0.02 in d = 2 and ~ 0 . 2 6  f 0.01 in d = 3 )  compare well with the Monte 
Carlo indication [ l ]  of superuniversality of the exponent A ( ~ 0 . 1 9 ) .  It is found that 
for the triangular lattice series, even this small size gives quite a smooth variation in 
A N  and extrapolates to A-0.20, which is close to the Monte Carlo estimate [I]. It 
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Figure 2. A,v obtained from (l), using a least-squares fit estimate of A, E, C and A.  The 
extrapolated estimates of A are indicated by the horizontal arrows (m: square; A: triangular; 
0:  simple cubic). 

thus indicates that because of even-odd fluctuations, the square and simple cubic 
lattice data are not yet sufficient and slightly larger series data would probably give 
the (superuniversal) A value close to the Monte Carlo estimate. 
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